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Thorne’s method for obtaining transport coeflicients in a binary rigid-sphere
mixture is reexamined. First, a close look is taken at the way in which the
point where the Enskog functions y,; are evaluated is introduced. Second,
the calculation of the fluxes in the sysiem and the transport coefficients is
given. Thorne’s results arc found to be correct and independent of the choice
of the point where the transfer planc is located. This does not hold true for
the diffusion flux. It is shown that a different diffusion force is obtained for
each selection and that only those diffusional effects which are of first order

- in the density are consistent with irreversible thermodynamics.
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1. INTRODUCTION

The calculation of the transport properties for a system composed of a
binary mixture of dissimilar spheres using the well-known Enskog approach!!!
was done by H. H. Thorne approximately thirty five years ago. Although
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his calculations were never published, the results have been reported in the
literature'™® for a long time. On a first examination, the problem of a binary
mixture looks so much like the one-component case that it would seem
worthless to pursue any detailed calculation for its properties. Furthermore,
many authors'®-11 have either used them or rederived them by other methods,
apparently holding no doubt about their correctness. And cven further,
experimental work done mainly on hard-sphere-like mixtures, measuring
essentially diffusion coefficients, hus been compared with such expressions. ')
Thus, one more paper on this subject seems hardly justilied. Yet we believe
there to be some points, both cssential and minor ones, which to our knowl-
edge have not been adequately discussed in the hterature. Due to the great
importance that the Enskog-Thorne results have played in the kinetic
theory of gases, we feel that clarification of such points will add to our
understanding of these complicated phenomena.

Our paper is in essence of a pedagogical nature. New results are obtained
but are not of a fundamental kind. However, we hope that the final results
will be uscful to those engaged in experimental work and/or in computing
transport coefficients. This is not all at irrefevant, especially when in recent
years'!? 18/ we have seen how suitable it is to use Enskog’s theory to represent
such properties for simple dense fluids at reasonably high densities and
pressures. Hopefully, this will also be true for mixtures.

This work was motivated by the following considerations:

1. Although expressible in terms of a power scries cxpansion in the
density, Thorne’s resuits for the transport cocllicients are strictly only valid
to first order. Indeed, the radial distiibution function y is only approximated
to account for the common volume of two spheres. To include corrections
which are of higher order, one would have to estimate volumes of pairs,
triads, and so on ol associated sphcres. [-urthermore, it has been shown
recently by Sengers ef a/.'%'® that for a onc-component system and within
the context of the generalized Boltzmann equation which iscludes the triple
collision term,"4® Enskog’s theory is only an approximation to first order in
the density. This means that it would be hard to evaluate the importance of
the higher virials for the transport coeflicients when a general convergent
kinetic theory of gases is still lacking.

2. In view of the preceding statement, one may wonder how valid are
the comparisons which have bcen made between Thorne’s results and
experimental data. Indeed, one should not expect more than first density
corrections to the formulas provided by the dilute hard-sphere mixture
model. Furthermore, a comparison between the kinetic results with
irreversible thermodynamics has, to our knowledge, not been carried out.
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Thus, experimental quantities may very well not coincide with theoretical
ones.

3. In a recent letter,™® it was cmphasized that the point at which
Enskog's function y;; for a binary nixture 1s cvaluated is reiated to the
explicit values for the fluxes of molecular propertics. Here, we show exphcitly
that as far as the transport of momentum and encrgy is concerned, such a
point may be chosen anywhere along the fine joining the centers of the
colliding spheres, leaving their respective luxes mvariant. This is not the
case for the mass flux, where there arc as many forms for the diffusion force
d,; as possible choices, namely, an mfinite number. All these vectors contain
an additional term with respect to Thorne's original expression which is of
higher order in the density, i.e.. of order #°. Furthermore, it is also shown
that none of these vectors leads to results which are consistent with irreversible
thermodynamics.®"

4. Since the Choh-Uhlenbeck integraf equation for muiticomponent
systems has been extensively discussed togethier with the explicit expressions
for the transport coeflicients,!® onc can compare how Thorne’s results fut
into this general scheme. This comparison has been dealt with independently
and will be published elsewhere. ¥

Features associated with the first three statements will be covered in this
paper. Our purpose, again is to offer something useful to workers engaged
mostly in the application of Thorne's results. Thus, we take as our starting
point the generalization of Enskog’s equation for a binary mixture®®" and
proceed from there. This is summarized in Section 2. Section 3 contains an
outline of their solution for the hydrodynamic regime using the Chapman:-
Enskog® approach. Since the method is u standard one, the algebraic
details are minimized, including those involved in the derivation of the
hydrodynamic equations. Section 4 contains a bricf discussion of the solutions
to the set of lincar inhomogeneous integral cquations for the perturbation
functions ¢, using a *‘scaling’ transformation which actually reduces them
to the dilute gas case. Section 5 is devoted to the calcuiation of the fluxes
of the molccular properties. The derivation of the transport cocfficients s
outlined in Section 6. Up to this point, the method 1s valid, in principle. to
all orders in the density and to first order in the gradients of the system. Also,
the explicit form for the diffusion force d, 1< & function of the poini chosen
to evaluate y,; . In Section 7, we analysc the content of these statements in
the light of irreversible thermodynamics. In particular, we show that the
diffusional effects arising from a Thorne Enskog scheme are consistent with
the phenomenological ones only to lirst order in the density.
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2. KINETIC EQUATIONS

We consider a system composed of a binary mixture of rigid spheres
with diameters o, and masses n1, , 7 - 1, 2, enclosed in a container of volume
V with a number density n; of species /.

In order to establish the kinetic equations for this system, we use
Enskog’s assumptions:

1. Only binary collisions between molecules are considered.

2. The molecular chaos assumption is made, i.e., the correlations
between positions and velocities of two particles in u-space are neglected.

Thus, in the absence of external forces. the kinetic equations for the
single-particle distribution functions! f; are given by'*¥

(/ bove ¥ _ > ” [xo(e; = v k) f(r k) [ (r)

il

- Xij(ri - yi]k)/;'(r, T U,,‘k),/;‘(r,‘)] U?}(g,; : k) dk (/V}. (1)

where v; and v, are the molecular velocities betore and after the collision,
respectively, and y,; is the generalization of Enskog's function which accounts
for the shielding and the excluded volume in a collision between molecules
of species ¢ and j. This function is cvaluated at an arbitrary point located
between the centers of the colliding molecules (see Fig. 1). This arbitrariness

% The following notation is being used: f, - f{r,,v,, 1), where r,_is the position of a par-
ticle of species /.
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Fig. 1. An arbitrary point (r, -+ yk), in the line joining the centers of molecules ¢ and
jis used to evaluate tinskog's function y,; .
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will appear to be irrelevant in the calcalation of all the fluxes related to the
transfer of molecular properties, with the only execption being mass transfer,
where a different diffusion force occurs for a particular selection of the point.
Also, in Eq. (1), the quantities o,; , k. and g,, are defined by

6, = (0, 4 )12 (2a)
k=(r -r)ir -1 (2b)
i =V, -V (2¢)

Since in Eq. (1), the function /;, f, . and x,; are evaluated at different
points in configuration space, duc to the fuct that the colliding molecules
are not point masses, a Taylor series expansion around the point r; is
performed. This expansion is justified on the basis that the assumption of
local equilibrium is invoked. To first order in the spatial gradients, this
yields the following result:!

[8f/ot].; L g® (3)

where [@f;/@t],; stands for the rate of change of £, duc to collisions with
molecules of species j. The £} terms of Eq. (3) are found to be

2P = xiw) [[ Ui = 14) obi; ) dkdy, (4)

2%

xiled [ [ KO8 5+ 1 9) olg, K dkdv,(5)

) 6
-{’px(;s) = ff k- inj(fi./; [/J))IJUU g )dk d‘/ ( )

where V == d/dr. Substitution of Egs. (4)-(6) and (3) back into Eq. (1) yields

) of X
Yy, / S Yy e (7)
ot I |
Equation (7) expresses the kinetic equations for /; up to terms which
are linear in the spatial gradients of the system.

3. HYDRODYNAMIC STAGE. HILBERT-ENSKOG METHOD

This section contains an outline of the standard Hilbert -Enskog method
which is used to obtain the solution for the f, satisfying Eq. (7) when the
system is close to local equilibrium. In this stage, the so-called hydrodynamic
stage, one assumes that the distribution functions can be expanded in a
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power series of a uniformity parameter £ which is a measure of the spatial
gradients in the system. Thus,

fio FO g (8)

Substituting Eq. (8) into Eg. (7) and collecting terms of the cqual
powers in £, noticing that the left-hand side ol (7) is already of first order in &,
yields the following resuits.

(a) To zero order in &, we have that
i‘: J(-/Emj’;n)) 0 (9)
FAE|

where
JSLy = [ ons - 1 e, k) dkdy, (10)

FEquation {9) describes the uniform and stationary state of the mixture.
The suflicient condition for these cquations to be satisfied is that the £ be
local Maxwellian distribution functions, namely

W = 2wk TY 2 exp(— in,e 212k T) (1)

but the necessary condition cannot be invoked due to the fact that no /-
theorem has yet been proved for Eq. (1). Thus, one must assume that this
solution is unique. Furthermore, the six arbitrary paramcters which appear
in Egs. (11) are selected so that they correspond to the true local particle
densities: s1,, i = 1,2, the local hydrodynamic velocity u, and the local
temperature 7. Therefore,

T S (12)

pu = }; | _/-f‘))llli\', v, (13)
i1

Ikl Y | £ dv, (14)
[

¢; = v; — uis the thermal velocity. and &y is Boltzmann’s constant.

In order to obtain the hydrodynamic equations to this order in the
gradients, one must first derive the transport cquations to lowest order in
the gradients. This is achieved by substitution of the first two terms in Eq. (8)
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back into Eq. (7), keeping only those terms which are of first order in &,
This gives the result'!
3

L . 2 v i DS e
e LUEED I 70 1 S R VAL b0 D D W G VAL
ct cr it IR AP
(15)

When these equations arc multiplicd by the collisional invariants
B, = 1, mye;, and m,¢,2/2, an integration s performed over the whole
velocity space, and a summation is curricd out over the species, the lellowing
results are obtained®:

(i) For ¢ =+ 1, we get the equation of continuity

(On/Dt) 4+ nV.eu -0 (16)
with n - Y n, .
(1) For Y, = m,c,; , we get the equation ol motion
(Du/Dr) - (L!p) Vp, 0 (a7

where p, 1 the hydrostatic pressure defined as

po= 3 Y nknT(l | bix.,) (%)

W]th P Z,‘ p; == Zi m;n; and b,'j 'i i '}’::/

(iii) For ¢i; = im.c?, we get the energy equation

! ' ; _‘2/2” - C
T Dt 3”/\'1; T u -0 (] ))
where

DIDr .- (&j¢r) : usV (20)
Equations (16), (17), and (19) are the Euler equations for the mixture.

(b) To first order in £, the equations for /'* ure those defined by Eq. (15).
In this case, the left-hand side, which is only a function of £, can be
computed in a straightforward manncr. Indeed. the strecaming term
DS = [(@fer) A+ v s (@fen)] £ reduces to

DS = —3nkgT[L + Qpof3nku V%S D] & 2€,€,: Vu

4o ¢ [VIn(nksT) - (62 - 5V in T — (mipksT) Upg]
(21)
where €, - (m;/2kpT)*?c; .

* This procedure requires the previous evaluation of the integrals given by 7%, & & 1,
with f; = f!?, which is outlined in Appendix A.

i
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Addition of this equation with the six terms arising {rom the remaining
part of the inhomogeneous term of Eq. (15) leads to a set of integral
equations for the £, namely

2
Z Xis f[‘ (O)f((l)((ﬁl i ¢ (J)Jl i (bil) U?}'(gu ‘ k) dk (/C}
=1
= --»fﬁm{l(i(%f — e, VinT - (mn)d;,; e
+ 2K/A{6 6.0 1 Vu - Fin) KI(8 2 - 3V - u) (22)

where [V = £i%¢,; and {S}, stands for the symmetric part of the tensor S.
In Eq. (22), d,; is the diffusion force defined by

b (Lo 1 iy
diy = pikgT ( P Ve o Vp}) 'y b
[v In ( Z’) (M, — MV In T 2—"—0— Vin X,,] (23)
? 7

where p; == niknT 5 (1 4+ bix)
Here, the following notation has been introduced:

Ki = 14 (12/5) Z b MM, (24)
-1
2
Ky == 14 (4)5) Y box, M (25)
=1
Ky = 1+2 Z biXuM,, -+ (poinkyT) {26)

where M, = m/(m; -+ oy = m/my, and my, - }_'?' LM

It is important to digress for a moment to emphasize the fact that there
are as many forms lor the diffusion force as choices of the point of evaluation
of the y,; function. In particular, in Thorne's original calculation, his form
for d;; is compatible with the choice locating the point in the middle of the
line joining the centers of the coliiding molecules.ic., v;; - o,;/2. Inthis case,
the last term in Eq. (23) vanishes. Two other choices have been suggesied
in the literature. The first one®” suggests that y,; be evaluated at the contact
point of the two molecules, i.e., y,; - o,./2.in which case the last term in Eq.
23 gives a contribution

[(Ui - U))_,"(U,' ' U/)}V ln Xi) (27)
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The second one'® suggests that y,, is evaluated at the center of mass
of the two colliding molecules, i.c., y,, M,,o.; , and the contribution of
such a term is

[(m; = m)j(m; + m )]V iny, (28)

As we shall see later, none of these choices is to be preferred with
respect to the others.

The solution of the set of linear inhomogencous integral equations for
¢, will be discussed in the following section.

4. SOLUTIONS TO THE LINEAR INHOMOGENEOUS
INTEGRAL EQUATIONS FOR ¢,

In the previous section, we derived a set of linear inhomogencous
intcgral equations for the perturbation functions ¢, , ¢ - 1, 2. In order to
solve [or these functions, we shall make use of the solutions of the analogous
integral equations for the dilute mixturc and then show that a simple trans-
formation of variables will lead us.to the solution of Eq. (22). In fact, if in
these cquations we set K; = K, = 1, yx,;+ x. = 1, and K/ = 0. we
obtain the set of linear integral equations for the corresponding dilute mixture
in the Boltzmann case. The solutions arc well known to be of the form!®

¢ =A;-VInT uD,-d, - B, :Vu (29)

where A, D and B satisfy the following integral cquations:

L c T e ire iy rd ) S0 5
Y[ IOFOA - A - A= A oltg, K dkde, < fO@2 - D,
i=1 Y
(30)
Y ([ 079D, + B, - D — D) otig,. - k) dk de, ~ (jn) [P, (31)

jo1

5

.

[[ 10708, & B, — B/ — B) olw,, k) dk de, - 2/ V16,65,

(32)

In orders to solve for the functions ¢, satisfying Eq. (22), one assumes
that they are of the form

I
—

j

¢ = —A;+ViInT - nD;+d,;, -B;:Vu— HV.u (33)

¢ The tilde stands for the dilute casc.
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By substitution of Eq. (33) back into Eqg. (22), the following set of
integral equations is obtained:

S o [ [FOFOA Ay — A = A G K dkde, ~ K06 - D,
jerl .

(34)
i | J FOr9p, - -D/ - D/)okg,, K dkde, = (1in) [P, (35)

S [JrOF0®, B~ B B eig K dkde, = 2K.T0,%.),
=1

(36)
xii | [ FOFY o H — H - H)) ob (g, K dkde, - K FO@&E )
=—1 *
’ (37)

with 7 standing for each species.

The solutions to Egs. (34)-(36) arc now obtained in a straightforward
manner from Eqs. (30)-(32). Indeed. Eq. (34) can be reduced to the form
of Iq. (30) through the following transformation:

/11 — A, n; -k, frfj oo X,,,rr?j./l\’,K; (38)
Also, Eq. (35) is reduced to the form of Eq. (31) if

~

2 2
D,->D,, Gy " X7 (39

1)

and finally, Eq. (36) 1s reduced to the torm of Eq. (32) if

B, —B,, n; =K, oy e x,oh KUK (40)

Equation (37), which gives the integral cquations for the functions
H, which are the coefficients of V . u, have to be dealt with in an independent
manner. This is so because in the dilute mixture. the bulk viscosity, which
arises precisely from the term containing V « u, vanishes identically.

Since the solutions to the functions A, B, and D arc alrcady known for
the Boltzmann mixture, one can easily write down the corresponding solutions
for A, D, and B by simply applying the transformations given above. Their
explicit form will be given at a later stage.

5. FLUXES OF MOLECULAR PROPERTIES

The flux of the various molecular propertics, mass, momentum, and
kinetic energy, can be calculated by direct derivation of the equations of
change for such propertics. This can be done by a standard procedure'®
which shall not be repeated herc. The result s that the fluxes of molecular
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properties i, (s=my; . me; . and m,e®2) is the sum of two contributions. the
kinetic cnergy contribution and the onc arising from the potential energy.
The former contributions are given by

(i) Mass flux S "_/}/n,vc, dv, (41)
(i) Momentum flux pli i. J‘./',m,cic, v, (42)
{ut) Kinetic energy flux Jie i "/}.‘_,m,('z'-’c,v dv; (43)

[

The latter contributtons, also calied the collisionat transier contributions,
are a bit more difficult to obtain. Here, we shail outline a generalization of
Enskog's calculation for a single-component case to the binary mixture.

Let a planc be located at an arbitrary point with a vector r between the
colliding molecules (Fig. 2). Then, the flux vector ¥, of a molccular property
fi; due 1o the coliisions between molecules of species ¢ and j is found to
bc(l.'.!)

v, = bob [[[ @ gase ks -k )
X (g“ ° k)k C/k (lci (/Cj (44)

< -— K (unit vector}

P

i

A

\
o ? ! 2,

center of molecule | { l—}—————- g e e ] /‘ center of molecule |
~. .

o NN L
~o—.

contact point

AN

arigin

plane

Fig. 2. An arbitrary point r between the coiliding molecules is used to locate a transfer
plane for nolecular propertics.
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Expanding this expression in a Taylor series around r, it reduces o
the form

i = }01; [Xu JJ ‘.(‘/’ - ‘/’;)/:/,(g“ ‘ k)k dk de; (/Cj
- YiiXis ’JJ‘ () — ) [k - Vinfi(g,, - Kk dk dc, de;

— YiiXis J fJ. (' = ) fifk - Vin fi(g,, - Kk dk de; dci]

(45)
where all functions appearing in the right-hand side are now evaluated at the
point r. Thus, the collisional transfer contribution of any molecular property
is independent of the point where the plane is chosen to lie.

The total contribution to the fluxes arising from collisional transfer
is of the form

wé:‘—z‘i‘i/v I’./ lvz (46)
1.

From symmetry arguments, one can sce that ¢, = ¢, and hence the
evaluation of Eq. (46) is reduced to the calcuiation of ¢y, and ¢, .

We consider now the collisional transport of the momentum of the
molecules. When ¢, = m,e; is substituted into Eq. (45) and the integrations
are carried out (sec Appendix B), one obtains

P 2
75 Z (Z Mazquz;) m; ’ ﬂc C; dc

=1 \jel

2 . 2 2
. (z M,,b,,x,;) m, If,(',z de;1 - [§iVu}, — V-ul] ) z
i1 Vel 1=

i47)
since W == P¢ In Eq. (47), 1 is the unit tensor and

wy; = $rky TV Qi MM Y2 ol (48)

¥

In the case of the collisional transport of kinetic energy. we set
J; = myc2/2. The evaluation of the corresponding integrals (see Appendix B)
Ieads to the result that

2 2 N
J»:d’ = ‘Jz Z (Z ']52M1'7'Mi1h//X1‘)'\’ i, _‘,/;(-‘zzc: dci

el \i=1

2 2
— $QrkaT) Y Y mngy o (MM, imo) 2 VT (49)

i=1 j=1
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Equations (47) and (49), when added to their respective kinetic contri-
butions, give the complete expressions for the momentum and energy
fluxes. These expressions, together with the explicit forms for f; up to terms
linear in the gradients, will be used in the following section to calculate the
corresponding transport coefficients.

6. TRANSPORT COEFFICIENTS

In order to compute the transport coefficients tor a mixture of dissimilar
rigid sphercs, we use the results-obtained in the previous sections. Indeed, the
fluxes for the system are given by Eqs. (41)-(43), (47), and (49), since there is
no collisional transfer contribution to the mass flux, and also because

J, == 30 g (50)
P — P(k) P(r,‘)) (51)

On the other hand, up to first order tn the gradients, the single-particle
distribution function for species { has the form

L= 00 4 £g, ) (52)

The procedure is now straightforward, so that we shall not repeat the
details here.’t Taking into account the modilied {orm for the diffusion force
d,; given by Eq. (23), one finds that the diffusion coefficient D), and the
shear viscosity % are identical to the results obtained by Thorne.®” The
thermal diffusion ratio is given by

N o172
kr = §{(n/n) my “Ky(aga_,. y — a4 1a,. )
1/ 2
A= (mofn) my VP Ko(ay 1y - Gy ) Hana . — dil) (53)

differing by a factor of yi7 from Thorne’s result.” Similarly, the thermal
conductivity A is simply kg! times Thorne's value. Thus, all thesc results
confirm their independence with respect to the point of evaluation of the
function y;; .

The bulk viscosity is given by

{ == (mhg T2 mE gty 00 -+ 220 M M n,otxes B om0, xe0s')
(54)

showing that it s an effect at least of order #% This resulit is identical to that
obtained by Tham and Gubbins.'”

7 All the quantities appearing in Eq. (53) have the same meaning as in Section 169 of
Ref. 1.
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Finally. we should like to emphasize that although these results are
apparently correct to all orders in the density, this s not the case. In fact,
a close comparison with irreversible thermodynamics will show that this is
truc only to first order in the density. This point will be discussed in the
lollowing section,

7. COMPARISON WITH IRREVERSIBLE THERMODYNAMICS

In view of the preceding results, we shall use Eq. (23) for the diffusion
force in order to compare it with irreversible thermodynamics.

Boltzmann’s equation corresponds in irreversible thermodynamics to
the local validity of the perfect gas assumption. In this approximation, when
the problem of mixtures is considered, one uses the samce form for the diffusion
flux from both the macroscopic and microscopic points of view, namely

¢ — €= — —— Dyl ke (55)

On the other hand, in the theory of moderately dense binary mixtures,
one finds expressions for this flux which arc formally identical to Eq. (55).
However, in irreversible thermodynamics, the vector dy, is a function of
those local thermodynamic variables which are consistent with the corre-
sponding equation of state.® In kinetic theory. Irom Thorne's generalization
of the Boltzmann cquation for a dilute mixture, an expression for the diffusion
fiux is obtained which is of the samc lorm as Eq. (55). Yet, the vector d,, has
no obvious connection with irreversibie thermodynamics. It is thus interesting
to compare the two expressions for such a flux in order to find out the
validity of the kinetic model proposed ror the dense mixture.

This comparison will be carried out taking into account the fact that
from the phenomenological pomt of view, d;, is determined up to a term
proportional to the temperature gradient which may be included in the
sccond term of Eq. (55). In fact, such a rearrangement of terms would
correspond to a transformation between forces and fluxes where the diffusion
flux is kept fixed, onc force V777 is fixed. and the {orce d;, and the coeflicient
ky change.®

We recall that in irreversible thermodynamics, the vector' dif is
defined to be equal to'®

Ty U R Syl 5‘2__*;_1‘) (56)

12 kT \'my cr m, v oy dr m, ér

% The equation of state for the ideal case corrceled with higher-density terms.
® This calculation is outlined in Appendix (.
12 The superscript H stands for Hirschfelder.
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where , and S; are the chemical potential and partial entropy per particle
of species i. These thermodynamic variables can be calculated from the
cquation of state given by Eq. (18), i.e., Thorne’s cquation of state. Since
there are two corrections in orders in the density, we shali discuss them
separately.

To first order in the density, Thorne's expression for d,, , namely d{}%,
docs not correspond to diy’ but their difference 1s proportional to V7T/T.
Consequently, the corresponding diffusion flux is compatible with the pheno-
menological equation (55) but by the above argument, the kinetic thermo-
diffusion coefficient k™ is not equal to the phecnomienological one. They are
rclated through the expression

: h iy 27 . Moty — 1N )
0 P T st g P I )

my oy

where k4§

stands for the kinetic (Thorne) expression of k; . Up to this
order in the density, the point ol cvaluation of the function x,, has no
influence whatsocver on the results.

To second order in the density, the two expressions for k4 are different
by other terms besides the one proporitonal to V777, Conscquently, the
kinectic expression for the diffusion flux is inconsistent with the phenomeno-
logical one.

The difference between the two diffusion forces is given by

2 . fa] e )
(H) (Th) w Uy — OGq ity Cily T ”1/7:
dio’ —dyy = 5 010y —— (0 B =) - S Qv -a) =0
12 18 7172 2 Va Ut or ]8( 1 ) 12
4 Oy Ny
3 <
[(80’12 — 30y) o® —-é—lr— < (Buye - 3ay) 0y {r—] (58)

where a term proportional to V77T has not been taken into account. In
Eq. (58), the point of evaluation of y,, appears explicitly on the right-hand
side and notice should be made of the fact that regardless of the point where
it is evaluated, the right-hand side never vanishes.

These discrepancies, apparent oncs (o first order in the density, real
ones to second order in the density, arc important when comparison is
made with experimental results. In order to emphasize this point, we have
expressed our results in terms of those given by Landau and Lifshitz2"
and de Groot and Mazur®' since they scem to be best fitted 10 express
expcrimental data. In Refs. 27 and 2§ the diffusion coefficient 2 is related
to the cocflicients Dy, appearing in Eq. (55) through

D = Dy(npypoimny/pihk et cp)p v (59)

822/{7[2-6
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where ¢, is the mass concentration of species | and w is the chemical potential
of the mixture, p = my 'y, — m," 11y .
Also, their thermal diffusion ratio is not identical to £, but we have

(1%/n,n,) 1),2A'-(r") “{(p*ipyps) Dk (60)

which thus relates k%" with &, through Iq. {57). Other quantities, such as
the Soret and the Dufour cocfficients, arc also related to Eq. (60) and thus
to the kinetic expression for 7", but these shall not be written here, since
they are explicitly given in Ref. 22.

As a final remark, we would likc to emphasize that the Thorne Enskog
scheme dealing with moderately dense mixtures for rigid spheres is not
adequate if one goes to an. order of approximation quadratic in the density.
This holds true at least for the diffusional effects on the basis of irreversibic
thermodynamics. The clarification of this guestion will have to wait until the
foundations of a kinetic theory of densc gases is laid.

APPENDIX A

Here, we outline the evaluation of the integrals £% 51 (/) by extending
Enskog’s method to a binary mixture.

(i) From Eq. (5),
L = [ GFO 0 gy kdkde, (A
Owing to the form 0ff§°), . }‘”’ - f ,(»“), Eq. (A.1) becomes
22 = [[£O70k 9 int/"f1") g, k dk de, (A.2)
Taking V In( f{* £”) from Eq. (1) and substituting into (A.2), we get
LY = i [[1OFOR V02T 2k T - € VT

+ (myfksT)(e; -i- ¢;) - Vu] ol - k dk de; (A.3)

Using techniques similar to the one used in Section 16.8 of Refl. | in
order to integrate over k, we obtain thic following result:

3}5;2) = §~7Txi,~a,3~,»f§°) ffgw{g;'i Y% h‘(”?/‘Ta)
+ (’77j/2kBT2) vT- [2(':'28;: — 3M [ 2g,(c; " g;,) — g?zc; - 3/"08‘;’:&‘:‘)]

+ 2m;fkgT){(c,8;; — §M,;8::8,.) 2 Vu - é"‘lilgfiv - uj} de; (A.4)
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Finally, integration over c¢; yields
f[),(f’ = — b,',x,,f}m{[v InGriy;TY -+ Vingein)  Vinly,;T)
- My(REMEE - 2My — AM )V In T] - ¢,
+ M 6.6, : Vu = M (E2 — HV - u} (A.5)
(ii) Evaluation of Z3'( f). From Eq. (6),
2P = [k Vol fOF 4 07 0¥l K dide;,  (A6)
Integration of (A.6) over k gives
«(/S) = %W}'ijff?)ffn) Vi i f)(mgn de; (A7)
Integration of (A.7) over ¢; yields

LY = —Qpuion) byfPe - Uy (A.8)

APPENDIX B

In this appendix, the collisional transfer of molecular properties due to
collisions between dissimilar molecules is calculated.

(1) Collisional transfer of momentum. Only the first and the second
integrals of Eq. (45) wiil be evaluated, because the evaluation method is the
same for the remaining ones.

When ; = m,;, the first integral of Eq. (45) becomes

Iy = m, f f f (¢ — &)/ /(& - Kk dk de, de, (B.1)

Integrating (B.1) over k, taking into account that the velocities ¢; and
¢, depend on the vector k, and making use of Scction 16.8 of Ref. I, we
obtain the following result:

PO

|y = 1Sy m M [ [ 1408, 1 g2 de,de, (B.2)

Substitution of g;; = ¢; — ¢, in (B.2) and integration over ¢; and ¢;
yields

2 . 2 .
by == 2n; Y, my J fiese, de; oy my | fie de; {B.3)
1-1 *

j=1
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Substitution of §; = myc,; into the second integral of Eq. (45) yiclds the
following expression:
by g ”f (¢ - c) ™% - Vi fg,, - Kk dk de, de;  (B.4)

integration of (B.4) over k yields

ly = §7m;Mj; vy ’.[ff")-f:()){[(glf v lnff”’)(g,-,g,,- = giMigs)
VIO gl g Ing ) de de, (B.5)

In order to evaluate (B.5), a change of the variables of integration will
be madc from ¢; and ¢; to g;,; , the relative velocity. and Gy =~ G - u, where
G is the velocity of the center of mass and u is the hydrodynamic velocity.
Thus

¢ =G, Mg, (B.6)

and the Jacobian | Ji of the transformation is found to be equal to one.
In terms of these new variabies,

FOFO — o ((mam )Y kg TV expl- mo(Go® + MM ;g5)/2ks T
(B.7)

and
VinfO oo Vinn, + [(mif2kyTHGE - MEigh —2M;Gy g) — 31 VIn T
- (myky THG, — M;g;,) * Vu (B.8)

Substituting (B.6)-(B.8) into (B.5) and taking into account that the
terms arising from odd functions of G, and g;, vanish, the integral (B.5)
becomes

L, = - bmy(m ks T)M;; J‘j.fz(‘m ;('I))[( Vu g 288t £5.1)/g:] dG, dg;,

- .ziwyi(nlf/kBT)M'?i J‘fffh)fﬁ(l) g,,-[(Vu ) g;r)g)i ok g“'(vll ) g;‘a)]} dGn (‘]gji
(B.9)

Integration over g;; and G, yicids the following results:
(a) First integral in (B.9):
I FO70 (Vs g )@ 1 i DIe,) 4Gy dg,,

= (4n,-n,/\/7—r)(2kB'I"m.‘)/mlm,)3"2[(2/15){Vu}S - (4/9)V - u1](B o)
10)
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(b) Second integral in (B.9):

706 0,ui(Vu - )@ = 8. Vu - gi0)i dGo digs
= (4ng, )V w2k w Tngine W E{ Vb, -+ 3V - ul) (B.11)

Substituting (B.10) and (B.11) back into (B.9) and adding them to the
result arising from the third integral in Eqg. 45, which is readily evaluated,
we get

'_"idi(T"kI!T) n nﬂXUOU(z’"O 1)‘”/1)l 2 Vo 1) (”Vu“ I V. u1)
{B.12)

Sinee, from Fig. 2, y; v, = o, Tor any choice of y,;, then (B.i2)

becomes
—w;(§{Vu}, | V -ul) (B.13)

where w;; 2 HwkgT) 2 niy 00 (2myM ;M) >
Hence, the collisional flux of momentum due to collisions between
dissimilar molecules is

pt == ?; P’;f’ M 3 Z - 2.‘ fre.c, de, -+ 1.'.],(',2 dc,)g
-~ w,{§{Va}, + V- ul}

: (B.14)

(ii) Collisional transfer of kinctic energy. Substitution of &, - m1,¢,%2

into Eq. (45) gives the potential contribution to the flux of kinetic energy

due to collisions between dissimilar molecules. The method of evaluation for

the resulting integrals is similar to that used in the case of the collisional

transfer of momentum.
When 5, == myc2/2, the first integral of Eq. (45) becomes

Lo dmodx, [ ennski, Rdkde de,  (B15)

Integration of (B.15) over k yields

L = a/15) ol [ [ fifi2m,0e, - e) ¢+ her - 3M, g8, de de,
: (B.16)
Substituting g;; = ¢, -~ ¢; into (B.16) and intcgrating over ¢, and ;.

taking into account that j fie.de; ~ 0. I, becomes

2 .
I = §MMxi; Y. bom, | e, de, LA (B.17)

i=1
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Substitution of ; = m«32 into the second integral of (45) yields

L= doliyuxams | | J’ (€ — )UK Vinf g, - Kk dk de; de,
(B.18)

Integration of (B.18) over k yields
I, = (#/12) o?jyi1XijmiMji l ‘ ./f‘())ff'“){l(c: CgiNgi8i g?ﬂ el
T gji(cign' hE gjicf) i "‘l,':(BzQJigug/i : g);l‘])} -V lnfs'O) dcz dc)
(B.19)

Making the change oi variables (B.0), substituting (B.7) and (B.8) into
(B.19), integrating the resulting expression over g, and G, , and adding the
corresponding results from the third integral of L. (45) leads to the following
expression:

-~ 3k g T SOM M, imy) olix,; VT (B.20)

where we have used y,; + y;; = v, . Then the collisional transfer of kinctic
energy due to collisions between dissimilar molecules is given by

[Jf’,‘t)]rj = 'aMiJ'MJ'zXU }_ bi}’”i J‘f,(‘,»zc, de;

[

= Bk *T) H8M M, imy) olx,, VT (B.21)

APPENDIX C

In this appendix, we calculate the thermodynamic quantities appearing
in the macroscopic diffusion vector (57). This macroscopic force is given by
the equation®

dl2 B pnkBT

PiP2 _ []_ a_f‘/'l _l (1/42 . ( ._Sil. 5_'-’__) _rl_] (C.1)
my or m, r n, m,! er .

The chemical potential is obtained by standard methods: from Maxwell's
relation,

©Cm/eV )1 wpn, EPIEND YN, (C.2)

the right-hand side is calculated from the equation of state (18). We integrate
Eq. (C.2) with respect to ¥, keeping constant the temperature and the numbers
of particles. The integration constant is lixed by taking the ditute gas limit
for a binary mixture, for which the chemical potentials are well known.
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The partial entropies S; per particle were similarly obtained.

In fact, when one works with the independent variables, temperature
and densities of particles, instead of the pressure, temperaturc, and con-
centration, as is usual in phenomenological theory, it follows that the d,,
vector takes the simplified form!

pipe_{ } (Cup | o
dy, = P2 1 1 (__1) o (‘" ‘)T

' pnkgT tmy \or/y

my 3 n;oplin, m,  Y.on éplen,

[ e ((p/ol‘)_("p_rnl 1 (epfe I")gp/(ngJ_FI_; (C.3)

where all these partial derivatives and gradients are calculated assuming
n, . ny , and T to be the independent variabics. The subscript T'in the gradients
of the chemical potentials means that these gradients are taken with variable
number densities but at constant temperaturc.

The rest of the calculation is a purcly algebraic exercise, with the result
for the thermodynamic force

_oppe il 1 47 . Cdm
dl2 = —;;;1— zn—h [n—l an —+' '—‘3'“ (71‘ vlll -t '—3— (7;2 V”Z

5 2 % 3 :
T g™ n,Vn, 4+ 18 - ((r — 18a,0%, | 3209 )0, Vi, i n, Vn,)
L — 18 3268 v
+ ig o, (o g ‘712 + 320,01, Vn,

1 . 4m 4

_)—’)_1;— {72— Vnz it ‘—3"‘ (723 V/12 ""3' - (J';.: an
1 2, 6 | 772023 3 :
b = wton, Vn, - 18 (0, IXU,UL v 326300, Vn, - n, Vn,)
g 18 - 32a%m, V
18 2 g, (a1 ulo” + 3207, Vi,

[L (eploT) epfon, I p/et) épien, ] ]
my 35 @plenny  my X (Epienm,
where up to terms of second order in d.ensity we have

(p; r7)(p/f_ﬂl
Siépienn;

:kn:1+437 3n+ na
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IR (i - PP 1 g3 S 3y 2
( a,°n + TN, S 3 a0, )

n\ 3 3 12
Sa? ? )
[ 6, 2 4. 3 3 2 3
g o,%n,2 4 9 7,%a, 18(71012 32(1],_,) na,
-
; 3 2 : 3 2
AT o, a® - 180,03, i+ 320%,) n,
2 [S5w? ) | . )
T [W Ulﬁnl‘i o 18 7,2014(”].; l8”1”%2 w320y nn,
2 5772
m 5 . . o7 .
= 0,30, - 18u,0%, | 320,y = n;,“nz‘]
18 2 18
2027 2m oy 2m oy, AT o 27, _:\’
S ! n, - 3 “12“2) (—3— NIRRT ORI, 3% ",
2 ¢ 2n v 2 2
T (AL WA S g T Sy
t o ( 3% n,? 4 3 TR, 3 7, ) \ (C.5)

with a similar result for the other term obtained by interchanging 1 by 2.

These quantities have been ordercd in ascending powers of the total
density, to show their dependence up to guantities of second order in .
Equations (C.3) and (C.4) lead immediately 1o Egs. (57) and (58) given in
the text.
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